Toric Kempf–Ness sets

نویسنده

  • Taras Panov
چکیده

In the theory of algebraic group actions on affine varieties, the concept of a Kempf– Ness set is used to replace the categorical quotient by the quotient with respect to a maximal compact subgroup. Using recent achievements of “toric topology,” we show that an appropriate notion of a Kempf–Ness set exists for a class of algebraic torus actions on quasiaffine varieties (coordinate subspace arrangement complements) arising in the Batyrev–Cox “geometric invariant theory” approach to toric varieties. We proceed by studying the cohomology of these “toric” Kempf–Ness sets. In the case of projective nonsingular toric varieties the Kempf–Ness sets can be described as complete intersections of real quadrics in a complex space. DOI: 10.1134/S0081543808040123

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology of Kempf–Ness sets for algebraic torus actions

In the theory of algebraic group actions on affine varieties, the concept of a Kempf–Ness set is used to replace the geometric quotient by the quotient with respect to a maximal compact subgroup. By making use of the recent achievements of “toric topology” we show that an appropriate notion of a Kempf–Ness set exists for a class of algebraic torus actions on quasiaffine varieties (coordinate su...

متن کامل

The Kempf-ness Theorem and Invariant Theory

We give new proofs of some well-known results from Invariant Theorey using the Kempf-Ness theorem.

متن کامل

Moment Maps and Geometric Invariant Theory

These are expanded notes from a set of lectures given at the school “Actions Hamiltoniennes: leurs invariants et classification” at Luminy in April 2009. The topics center around the theorem of Kempf and Ness [58], which describes the equivalence between the notion of quotient in geometric invariant theory introduced by Mumford in the 1960’s [80], and the notion of symplectic quotient introduce...

متن کامل

Toric Fano Varieties Associated to Building Sets

We characterize building sets whose associated nonsingular projective toric varieties are Fano. Furthermore, we show that all such toric Fano varieties are obtained from smooth Fano polytopes associated to finite directed graphs.

متن کامل

Projective Q-factorial Toric Varieties Covered by Lines

We give a structural theorem for Q-factorial toric varieties covered by lines in P N , and compute their dual defect. This yields a characterization of defective Q-factorial toric varieties in P N. The com-binatorial description of such varieties is used to characterize some finite sets of monomials with discriminant equal to one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008